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In this paper, regression problem in learning theory is investigated by least square schemes in polynomial
space. Results concerning the estimation of rate of convergence are derived. In particular, it is shown that
for one variable smooth regression function, the estimation is able to achieve good rate of convergence. As
amain tool in the study, the Jackson operator in approximation theory is used to estimate the rate. Finally,
the obtained estimation is illustrated by applying simulated data.
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1. Introduction

In many applications, there is usually no priori information about
regression function. Therefore, it is necessary to apply least square
methods in the study of regression problem. This paper considers the
regression problem in learning theory. The upper bound of the
learning rate is estimated by using general probability inequality and
Jackson operator.

It is well known that regression problem is an important one in
learning theory (e.g.,[2,14,9,11]). There have been many studies on
the convergence of regression problem (see [17,5,3,13]). All these
methods minimize a kind of least square risk of the regression
estimation over reproducing kernel Hilbert space (see [6,16]). In
this paper, we consider a function set consisting of polynomial
functions on X=[ —1,1], over which we minimize least square risk.

In regression analysis, an R x R—valued random vector (X,))
with E)? < oo is considered and the dependency of ) on the value of
X is of interest. More precisely, the goal of regression problem is to
find a function f : R — R such that f(X) is a good approximation of ).
In the sequel, we assume that the main aim of the analysis is to obtain
the minimization of the mean squared prediction error or L, risk

EF) =E{fx)—yI*).

The function that minimizes the above error is called the
regression function, which is given by

mx) =E{y|X=x}, xeR.
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Indeed, let f : R —R be an arbitrary measurable function on R. We
denote the distribution of X by . The well-known relation

E(f(0—y 1) = Elmx)—yP?) + /72 (F0—m(x)? p(dx)

(see [10,16]) implies that the regression function is the optimal
predictor in view of minimization of the L, risk

E{lm()—y|*} = min E{[f(0)—yI*}.
fR-R

In addition, any measurable function f is a good predictor in the
sense that its L, risk is close to the optimal value, if and only if the L,
risk

EH) =E{f®)—yI?) (1

is small. This motivates us to measure the error caused by using the
function f instead of the regression function by (1).

We know that distribution of the sample is usually unknown in
general, hence the regression function is also unknown. But often it is
possible to observe some samples chosen according to the distribution.
This leads to the regression estimation problem. Let z={z;}!_, =
{(x;,y)}i'— ; be independent and identically distributed random sam-
ples drawn on X x Y(Y c R). Our goal is to construct an estimator

L0 =f¢.D

of the regression function such that the L, error
[ 0-meoy e

is small.

Throughout this paper, we assume that |y|<M for some
M e R ., then im(x)| < M for any x € [-1,1]. Here we need to impose
smoothness condition on the regression function.
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Definition 1 (See Xie and Zhou [18]). Let k be a natural number. For
a continuous function f : [-1,1]> R, we define the k-th difference
of the function f:

k [k
Affo0 = (=1 ( ]‘ >f<x+jh>.

i=o0
Then the k-th order continuous modulus of f is defined by

() = |ARf ).

max
-1<xx+kh<10<h<t

Definition 2. Let k be a natural number. A function fis defined on
[=1,1]. If the k-th order derivative f¥ exists, and for all x,y e [—-1,1]
there exists a constant C > 0 satisfying

OOy < Clx—yl,

then we say that f*) belongs to the class of Lipschitz, which is
written by f e Lip.1.

It is well known that learning process needs some structure at
the beginning of the process. This structure (which is called
hypothesis space) is usually taken the form of function space
(e.g., polynomial space, continuous function space, etc). A familiar
hypothesis space is polynomial space, which has been used in
[4,23].

In the sequel, we introduce the polynomial functions (see [18])
on X=[-1,1]. Let

d
Hy= {f T R-Rf(X) = Zaixi,x»e[—l,l],aieR,i:O,l,...,d}.
i=0

iz
Obviously, the dimension of Hy is d+1.

We consider Fy={feHy: |fX)|<M+C*xe[-1,1]} as the
hypothesis space, where C =CCy, Ci is given in Proposition 1 and
C is the Lipschitz constant given in Definition 2.

The estimator f; is given by

_ (1T NI 2
fz—argfnell}g (ni_zl(f(Xl) Vi) +7»a(f)lz>‘ 2

where lla(f)Ii3 = S°¢_, |a;|? for f(x) = S°¢_, axi, and J is a regular-
ized parameter.

We will analyze the rate of convergence of estimator f,.

The efficiency of the algorithm (2) is measured by the difference
between f, and m. According to the definition of m(x), we have

/X (%)~ M) a(clx) = E(F)—Em).

Let
&dh) = 13-y
z n “~ 1 1)
it is a discretization of £(f). Therefore, f, can be written as

fz = argmin{&,(f) + Ala(f)I12}.
feFa

Theorem 1. Suppose that F, is defined as above, |m(x)| <M for any
xe[—1,1]. Let 2 =1/n(1+la(Qq(m,-))13), and f, be given by (2). Then
for all 0 < 6 < 1, with confidence 1—-9, we have
E(fz)—E(m)
_ 128@M+C)°(d+1)log2n2= "  882M+C*Ylog]
- . 9n 3 9n
+2 /X (Qa(mx)—m(x))° w(dx) +—,

where Q4(m,-) is Jackson operator with respect to m, which will be
given in Section 2.

The approximation result of Theorem 1 implies Corollary 1,
which considers the rate of convergence for the smoothness
regression function.

Corollary 1. Suppose that F, is defined as above, |m(x)| < M for any
xe[—1,1], and m® e Lip1. Let

1/k+1)
_ 9C*n
| \64@M + C+logZ2naC 7 '
P P S—

n(1+ la(Qg(m,-))ll3)
Then for all 0 < 6 < 1, with confidence 1-46, there holds
2k/2k+1)

9C*n
88(2M +C*)*log?
| 88@M+Clogt | 3
9n n
where [b] denotes the integer part of real number b.

128(2M + C*)2log221eM + ¢
E(fy)—E(m) < 4C* ( (2M+C*)“log M

The reminder of this paper is organized as follows. In
Section 2, we introduce the Jackson operator which is used in
this paper. In Section 3, the estimation is illustrated by applying
it to simulated data. We give the proof of Theorem 1 and Corollary
1 in Section 4. Finally, we conclude the paper with obtained
results.

2. Approximation of Jackson operator

In this paper we obtain the convergence rate of algorithm (2) by
using Jackson operator on X=[ —1,1]. Jackson operator (see [18,12])
plays an important role in approximation theory. For two natural
number d, r, taking q=[d/r]+1, Jackson kernel is defined by

1 (sin% o
Kdr(t) = Lq,r(t) =7 ’ (3)

; —<
Agr \ sing

where
2r
™ (sin%
Jgr= / 0Y)
_ \ sing

Lemma 1 (See Xie and Zhou [18]). Let K4{(t) be defined by (3). Then
Kg,(t) is a trigonometric polynomial with d order, and

T
Kg(t) dt =1,

-

T
/ tK 4 (6) dt < Cu(d+1)%, k=0.1,...,2r—2.

'3

Let f{x)=f(cos u)=g(u) for u=arccos x. By using the kernel K;,(t),
we define Jackson operator on [—1,1] (see [18]):

7 k [k
Qu(f %) =Ja(gu)=— [ Kyr () Z(—l)’ ( j >g(u+jt) d,

j=1
where r is minimum integer satisfying r > [(k+2)/2].

Lemma 2 (See Xie and Zhou [18]). Letg € C_zx, [=0,1,...j=12....
When 1 is not divided exactly by j, we have

T o
/ g(itelt dt =0,
J =T

where () denotes the set consisting of all continuous functions on [a,b].
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From Lemma 2 and the fact that
/ g(u+jtycoslt dt = g(jt)cos l(t— E) dt
-

=/ (]t)<cosltcosl]—+smltsm )dt 4)

s

if 1 is not divided exactly by j, then (4) equals to 0. Otherwise, (4) is a
trigonometric polynomial with [/j order. From the above discussion,
we know that Ky, is a trigonometric polynomial with d order. Then
Jalgu) is a linear combination of [ g(u+jt)coslt dt for 1<j<
k0<l<d,ie, Jagu) is a trigonometric polynomial with at most d
order. Therefore, Q4(fx)=J4(garccos x) is d order polynomial with
U=arccos X.

Proposition 1. Let k be a natural number, f € C_1 ;. For d=0,1,...,
there holds

1
v(x)_QdeX)l < Ckwk <fv m) ’ Vx e [_‘l v]]v

where C is a constant depending on k.

Proof. From Lemma 2 and the definition of Q4(fx), we have for
U=arccos x

F0—Qua(F. ) = 1) —Ja(g.1)] = ' | Kawatgaar

<2 / " Ky (O)wg(g,b) dt.
0

From the definition of smoothness modulus, we know
e = A+ @+ 0o (8. 717 )
For k < 2r—2, applying Lemma 1, we get for d=0,1,...

F00-Qutf01 < 204 (2 ) [ 1@+ DKo

1
= Gy (g‘d+1>

for any x e [-1,1].
For any t>0,ue[-mn,m|,u+te[-m,n], there holds |cos(u+t)—
cosu| < |t|. For s = cost, we obtain

suplAtg(u)|< sup IAfg(u)l—sumA"f(X)l

tI<h |cost| <h Isl<h

We can get wy(g,h) < w(f,h). Combining with the above inequality,
we obtain

F0—Qu(F. 01 < Cua (f, ﬁ) :

for any x e [-1,1].
The proof of Proposition 1 is completed. O

3. Applying to simulated data

We choose the function in F; by minimizing this risk with
respect to the parameter a = (ao, ...,aq) e R¢*'. To compute the
estimation in polynomial space, we need to minimize

—Z (Z aj —y,)2+/1IIaI§

1—1

Xn €[—1,1], y1,y2, - . .,yn € R with respect to

ajER, ]ZO,],,CI

for given xq,xo, ...

We may solve this minimization problem exactly by gradient. In
the sequel, we will illustrate it only by applying it to a few
simulated data set. Here we define (X,)) by

Y=X+o0-¢g,

where X is uniformly distributed on [ —1,1], ¢ is standard normally
distributed and independent of [ —1,1], and ¢ > 0. In Figs. 1 and 2,
we choose g=1, and use two different univariate regression
functions in order to define two different data sets with size
n=500. Each figure shows the true regression function with its
formula, a corresponding sample of size n=500 and our estimation
applied to these samples.

4. Proof of Theorem 1

According to the definition of f,, it is easy to obtain

E(f)—E(m) < E(f)—E(m)+ Ala(f)l3
< HES)—EM)—(E2(f)—E(M))}
+H{E2(Qy(m,))—E2(M)—(E(Qu(m,))—E(m))} | +D(4),
(5)

Fig. 1. m(x)=3(0.5x>—1)?+2x/(cos x+2) with n=500, ¢ = 1.
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Fig. 2. m(x)=8x/(x*+2) with n=500, ¢ =1.
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where D(2) = £(Qq(m,-))—Em)+ Ala(Qq(m, )3, Qq(m,-) is Jackson
operator with respect to m.

We first estimate |£(Qg(m,-))—&E(mM)—(E2(Qq(m,-))—E(m))| in (5)
concerning the random variable & = (Q4(m,x)—y)>—(m(x)—y)?, we
need the following probability inequality.

Lemma 3 (See van der Vaart and Wellner [1]). Let P be a probability
measure on Z=X x Y and set zy=(x1,Y1),...,.Zn=(Xn,Yn) be indepen-
dent random variables distributed according to P. Given a function
g:Z-R,set S= 3I_,8(z), let b=ligl, and put 6> = nEg?. Then

tz
Prob, . 2« {|S—ES| >t} < 2e —_—— 5.
zezn il | >t} XP{ 2(02+%)}

Using Lemma 3, we obtain the following Theorem.

Theorem 2. For every 0 < 6 < 1, with confidence 1—-0/2, there holds

\2
wlogi + %D(l).

1£(Qq(m,))—E(M)—(E2(Qa(m, ) —E(M))| < 3n 5

Proof. Let g(z)=(1/n)((Qq(m,x)—y)*—(m(x)—y)?). From Proposition 1,
we know that

1
1Qg(m,)lls < Cray <m, m) +lImllo,

where Imll, = maxy ¢ -1,1;MX)|.
Since |m(x)| < M for any x e [-1,1], we obtain

CCx
1Qu(m, Yloe < M+ <M+C,
Qtm.) d+1)

where C*=CC,<. For any z e Z we have

1 4M+C*)?
182) = L 1Qu(m, )2y + meo)Qum-meey) < A

Hence liglly, < (4M+C*)? /n=b. From (3), we get

1
E(g?) = -5 E(Qa(m.X)~2y +m(0)*(Qa(m,x)—m(x))*)
4M +C*)?
< OMECD” (e (Qutm, ) —£m))
12

Now we apply Lemma 3 with t=/e(e+E(Qq(m,-)—E(M)) to
g = (1/n)((Qa(m,x)—y)>—(m(x)—y)?). It asserts that for every & >0,
with confidence at least

8(e+E(Qq(m,-))—E(m))

1-2exp{ — 2 12
2( @MY o Qum,)—e(myy+ EMHC)VEE+ EQu(m.)—-Em)
n 3n

>1-2ex ,L
- P 8(AM+C*? |’

there holds

1£(Qu(m,)—EM) —(Ex(Qum, ) —Em)] _ /-
VEQa(m,)—E(m)+¢ -

Recall an elementary inequality:

ab<Ya*+b*) vabeR,

we have

1€(Qq(m,))—E(M)—(E2(Qa(M, ) —Ez(M))|
< & 4 EQum, ) —Em) +o)

<ée+ %D()v).

Let §/2 = 2exp{—3ne/8(4M +C*)?}, then

o 8AM+C)? | 4
N 3n 85
Therefore, with confidence 1-4§/2, there holds
84M+C* 4 1
1£(Q(m, )~ Qu(m, ) —Exmy)| < > = tog 2 12 D2

The proof of Theorem 2 is completed. O

For the first part in (5), we shall bound it by using the covering
number of the unit ball By in Fg.

Definition 3 (See Zhou [21]). Let Fbe a subset of a metric space. For
any ¢ > 0, the covering number N (F,¢) is defined to be the minimal
integer | such that there exist [ balls with radius ¢ covering F.

Covering number is also used in lots of literature (see
[7,15,22,8,19,20]). Let Bg be a ball in F; with radius R. Dimension
of 74 is d+1, we know that (see [21])

4R
logN (Bg,&) < (d+ 1)10g?. (6)
The first part of (5) is bounded by the following Proposition.

Proposition 2. For all ¢ > 0, we have
Prob; c z{|E(f2) —E(M)—(E2(f2)—E2(m))| = €}

2 _
< 2exp{(d+ 1)10g32(21v;+c r- g;l((;lf/lfégi }

Proof. From the definition of f,, we know that
|EG ) —E2(f2)—E(M) + E2(m)| SfSUP IEF)—E2(F)—Em)+ EL(m)|.
eFq

Moreover, since
I(y—h(x))* —(y—gX))*| = [(h(x)—gx))(h(x)+&(X)—2y)|
<(AM+2C"Ilh—gllw, h,g e Fyq

it follows that
[E()—E2(h)—E(@)+E2(8)| < 2(AM +-2C*)lh—gllo, h,g € Fy.

Let U={fi.fo,....filCFq be a y—net of F; with the size
I=N(F4,7). So we have

sup |E()—E(H)—E(m)+ E,(m)|
feFq

< sup|E(f)—E(f)—E(m) + E(m)| + 2(4M + 2C*)y.
feU
Using the similar way with Theorem 2, there holds for any f; e U,

) () _ 3n(e=3D(0)
Prob, « 2{E(f)—E(m)—(&:(f) Ez(m))\ZS}SZexp{ SaM2c ("

which implies that
Prob; ¢ z{|£(fz) —E(M)—(E(f)—E2(M))| = €}

< Prob; e zq sup [E(F)—EmM)—(E2(f)—E(m))| = 6}
feFq

< Prob; ¢ z{ sup|E(f)—E(M)—(E(f)—E2(M))| = e-2(4M +2C*)y
feU

<N(F d,v)fsupl’robz < 2{IE)—EM)—(E2(f)—E2(M))| = 6—-2(4M +2C*)y}
eU

3n(e+2(4M+2C*)y—1D(2))
8(4M+2C+)? '

< 2/\/(]—'d.y)exp{—
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We take y = ¢/(8(2M + C¥)), then 64(2M+C*2(d+ 1)10g32n<211\w/12+o)2 64(2M+C*)zlog% D)
< —+ G —,
Prob; c z{|E(f2) —E(M)—(E2(f)—E(m))| = &} 9n 9n 3
IN € 3n(3e—D(A)) with confidence 1-6/2.
= Fa 8(2M +C*) exp _W : To estimate T,, by using Theorem 2, we know that with
confidence 1-4/2, there holds

8AM+C*? 4 1
3 loggt D).

We bound D(/) in (7) and by taking 4 = 1/n(la(Qq(m, )13 +1).
320M 4O D)= E(Qu(m.)~E()-+ HaQu(m. )
' — [ @utma-moo) @+ .

From the definition of 7, we know that
Iflleo <M+C*, feFqy.

1£(Qa(m,))—E(mM)—(E2(Qa(m, ) —E(M))| <
Combining with (6), we have

&
log/\/ (.7:[], m) < (d+ 1)10g

Therefore, Combining with the upper bound of Ty, T, and D(A), there holds
Prob; ¢ z{|€(fz)—E(M)—(E(fz)—E2(m))| = &} E(fy)—E(m)
*)\2 . *)2
< 2expd (d+ 1log 322M+C*)°  3n(3e D(/l)% ' 64(2M+C*)*(d+ 1)log22" GV 88(2M +C*)*logs
e 64(2M+C*) < on + on

" 3
+2 [ Quma-meoyPucdo+ ;.
The proof of Proposition 2 is finished. O X

with confidence 1-6.
From Theorem 2 and Proposition 2, we can now start with the The proof of Theorem 1 is completed. [

proof of Theorem 1.
. " In order to prove Corollary 1, we need to estimate
Proof of Theorem 1. We use the following error decomposition:

E(fz)—E(m) < |E(f)—EM)—(E2(fr)—E(m))| /X(Qd(m.x)—m(x))zu(dx).
+1€2(Qa(m, ))—E2(mM)—(E(Qq(m,))—E(m))| +D(4)

—Ty+Ty+D(). 7 From (4), we know that Qg(m,x) is a polynomial with d order.

And Proposition 1 tells us

We begin with bounding T; in (7). We discuss two cases for _ 1
¢>M2/nand & < M2/n. |Qa(m, )| = Ja(m,arccosx)| < [mx)|+r | m, 5= ).

(i) When & > M? /n, we know that from Proposition 2
Prob; c z{|E(f2) —E(M)—(E2(f)—E(m))| < €}

Since m® e Lip.1, then we get

322M+C*)?  3n(3e—D(. w(mL><CC$—L<C*
> 1-2exp< (d+1)log @M+C)”  3n3e-D( ); N\ Tdv1) = k(d+1)k d+nk =7
& 64(2M +C*) e tevend 1
)2 _ where C =CCy is a constant depending on k.
>1-2exp (d+1)log32n(2M2+C ) _3nGe DU“)% . So we obtain
M 64(2M+C*)
1
|1Qq(m,x)| = |Jg(m,arccosx)| < |m(x)| + wy (m, d—)
Let +1
<M+C*, Vxe[-1,1].
5\ 2
sexpl (d4 1log 32N@M+C)?_ 3nGa-D()) | _ 0. Hence Qu(m.x) € .
M2 64(2M+C*)? 2 From Proposition 1, we know
Then we have / (Qqa(m,x)—m(x))? u(dx) < 11Q4(m,x)—m(x)lI2,
64(2M +C*)*(d+1)log32n2M €7 o 1 \\2 1
&= 9n < <Ckwk (m, m)) <C* ﬁ
642M+C*)?logé D) M2
+ % + % > o Combining Theorem 1 with the above inequality, we get
E(f)—E(m)
So there holds - 128Q2M+C*)2dlog?2@M+Cl Hee  88(2M+C*)2logs L3
IE(fz)—EM)—(E2(fz)—E2(m))| - 9n d2k 9n n’
)2 32n(2M + C*)? and this expression is minimized for
B 64(2M +C*)*(d + 1)log>2 "2 Xpressi miz

9n 1/2k+1)
64(2M+C*)log?  D(J) _ 9C*n _
w3 64(2M + C*)2log22meM - C Y
with confidence 1-9/2.

(ii) When ¢ < M2 /n, we know that from Proposition 2 With confidence 1, there holds

o2y 2k/(2k+1)
2 128(2M+C*)210g32m2113_2+02> + }

M
IE(fz)—EM)—(E2(f)—E(M))| < e E(fz)—E(m) < 4AC* |:<

with confidence 1-9/2.
Combining with the cases ¢ > M?/n and ¢ < M?/n, there holds

9C*n

88(2M +C*)’log? 3
| 88@M+Clogd | 3

9n n
D) —EM)—(E2(f)—E(mM))] The proof of Corollary 1 is finished.
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5. Conclusions

In this paper, the explicit upper bounds of learning rate have been
derived by using least square schemes in polynomial space. In
particular, the estimation of bounds has achieved good rate of
convergence for one variable smooth regression function. To our
knowledge, these bounds, in some extent, improved the previous
known bounds under the smooth condition. In the proof the Jackson
operator in approximation theory and general probability inequality
were used. The obtained error estimation has also been is illustrated by
applying simulated data.
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