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a b s t r a c t

In this paper, regression problem in learning theory is investigated by least square schemes in polynomial

space. Results concerning the estimation of rate of convergence are derived. In particular, it is shown that

for one variable smooth regression function, the estimation is able to achieve good rate of convergence. As

a main tool in the study, the Jackson operator in approximation theory is used to estimate the rate. Finally,
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1. Introduction

In many applications, there is usually no priori information about
regression function. Therefore, it is necessary to apply least square
methods in the study of regression problem. This paper considers the
regression problem in learning theory. The upper bound of the
learning rate is estimated by using general probability inequality and
Jackson operator.

It is well known that regression problem is an important one in
learning theory (e.g., [2,14,9,11]). There have been many studies on
the convergence of regression problem (see [17,5,3,13]). All these
methods minimize a kind of least square risk of the regression
estimation over reproducing kernel Hilbert space (see [6,16]). In
this paper, we consider a function set consisting of polynomial
functions on X¼[�1,1], over which we minimize least square risk.

In regression analysis, an R�R�valued random vector ðX ,YÞ
with EY2o1 is considered and the dependency of Y on the value of
X is of interest. More precisely, the goal of regression problem is to
find a function f : R-R such that f ðXÞ is a good approximation ofY.
In the sequel, we assume that the main aim of the analysis is to obtain
the minimization of the mean squared prediction error or L2 risk

Eðf Þ ¼ Efjf ðxÞ�yj2g:

The function that minimizes the above error is called the
regression function, which is given by

mðxÞ ¼ EfYjX ¼ xg, xAR:
10 Published by Elsevier B.V. All r

Project (2007CB311002) and

s. 90818020, 60873206).
Indeed, let f : R-R be an arbitrary measurable function onR. We
denote the distribution of X by m. The well-known relation

Efjf ðxÞ�yj2g ¼ EfjmðxÞ�yj2gþ

Z
R
ðf ðxÞ�mðxÞÞ2mðdxÞ

(see [10,16]) implies that the regression function is the optimal
predictor in view of minimization of the L2 risk

EfjmðxÞ�yj2g ¼ min
f :R-R

Efjf ðxÞ�yj2g:

In addition, any measurable function f is a good predictor in the
sense that its L2 risk is close to the optimal value, if and only if the L2

risk

Eðf Þ ¼ Efjf ðxÞ�yj2g ð1Þ

is small. This motivates us to measure the error caused by using the
function f instead of the regression function by (1).

We know that distribution of the sample is usually unknown in
general, hence the regression function is also unknown. But often it is
possible to observe some samples chosen according to the distribution.
This leads to the regression estimation problem. Let z¼ fzig

n
i ¼ 1 ¼

fðxi,yiÞg
n
i ¼ 1 be independent and identically distributed random sam-

ples drawn on X � YðY �RÞ. Our goal is to construct an estimator

fzð�Þ ¼ f ð�,zÞ

of the regression function such that the L2 errorZ
X
ðfzðxÞ�mðxÞÞ2mðdxÞ

is small.
Throughout this paper, we assume that jyjrM for some

MARþ , then jmðxÞjrM for any xA ½�1,1�. Here we need to impose
smoothness condition on the regression function.
ights reserved.
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Definition 1 (See Xie and Zhou [18]). Let k be a natural number. For
a continuous function f : ½�1,1�-R, we define the k-th difference
of the function f:

Dk
hf ðxÞ ¼

Xk

j ¼ 0

ð�1Þk�j
k

j

 !
f ðxþ jhÞ:

Then the k-th order continuous modulus of f is defined by

okðf ,tÞ ¼ max
�1rx,xþkhr1,0ohr t

jDk
hf ðxÞj:

Definition 2. Let k be a natural number. A function f is defined on
[�1,1]. If the k-th order derivative f(k) exists, and for all x,yA ½�1,1�
there exists a constant C40 satisfying

jf ðkÞðxÞ�f ðkÞðyÞjrCjx�yj,

then we say that f(k) belongs to the class of Lipschitz, which is
written by f ALipC1.

It is well known that learning process needs some structure at
the beginning of the process. This structure (which is called
hypothesis space) is usually taken the form of function space
(e.g., polynomial space, continuous function space, etc). A familiar
hypothesis space is polynomial space, which has been used in
[4,23].

In the sequel, we introduce the polynomial functions (see [18])
on X¼[�1,1]. Let

Hd ¼ f : R-R,f ðxÞ ¼
Xd

i ¼ 0

aix
i,xA ½�1,1�,aiAR,i¼ 0,1, . . . ,d

( )
:

Obviously, the dimension of Hd is d+1.
We consider F d ¼ ff AHd : jf ðxÞjrMþC�,xA ½�1,1�g as the

hypothesis space, where C*
¼CCk, Ck is given in Proposition 1 and

C is the Lipschitz constant given in Definition 2.
The estimator fz is given by

fz ¼ argmin
f AF d

1

n

Xn

i ¼ 1

ðf ðxiÞ�yiÞ
2
þlJaðf ÞJ2

2

 !
, ð2Þ

where Jaðf ÞJ2
2 ¼

Pd
i ¼ 0 jaij

2 for f ðxÞ ¼
Pd

i ¼ 0 aix
i, and l is a regular-

ized parameter.
We will analyze the rate of convergence of estimator fz.
The efficiency of the algorithm (2) is measured by the difference

between fz and m. According to the definition of m(x), we haveZ
X
ðfzðxÞ�mðxÞÞ2mðdxÞ ¼ EðfzÞ�EðmÞ:

Let

Ezðf Þ ¼
1

n

Xn

i ¼ 1

ðf ðxiÞ�yiÞ
2,

it is a discretization of Eðf Þ. Therefore, fz can be written as

fz ¼ argmin
f AF d

fEzðf ÞþlJaðf ÞJ2
2g:

Theorem 1. Suppose that F d is defined as above, jmðxÞjrM for any

xA ½�1,1�. Let l¼ 1=nð1þJaðQdðm,�ÞÞJ2
2Þ, and fz be given by (2). Then

for all 0odo1, with confidence 1�d, we have

EðfzÞ�EðmÞ

r
128ð2MþC�Þ2ðdþ1Þlog32nð2MþC�Þ2

M2

9n
þ

88ð2MþC�Þ2log4
d

9n

þ2

Z
X
ðQdðm,xÞ�mðxÞÞ2mðdxÞþ

3

n
,

where Qdðm,�Þ is Jackson operator with respect to m, which will be

given in Section 2.
The approximation result of Theorem 1 implies Corollary 1,
which considers the rate of convergence for the smoothness
regression function.

Corollary 1. Suppose that F d is defined as above, jmðxÞjrM for any

xA ½�1,1�, and mðkÞALipC1. Let

d¼
9C�n

64ð2MþC�Þ2log32nð2MþC�Þ2

M2

0
@

1
A1=ð2kþ1Þ

2
64

3
75,

l¼
1

nð1þJaðQdðm,�ÞÞJ2
2Þ
:

Then for all 0odo1, with confidence 1�d, there holds

EðfzÞ�EðmÞr4C�
128ð2MþC�Þ2log32nð2MþC�Þ2

M2

9C�n

 !2k=ð2kþ1Þ

þ
88ð2MþC�Þ2log4

d
9n

þ
3

n
,

where [b] denotes the integer part of real number b.

The reminder of this paper is organized as follows. In
Section 2, we introduce the Jackson operator which is used in
this paper. In Section 3, the estimation is illustrated by applying
it to simulated data. We give the proof of Theorem 1 and Corollary
1 in Section 4. Finally, we conclude the paper with obtained
results.
2. Approximation of Jackson operator

In this paper we obtain the convergence rate of algorithm (2) by
using Jackson operator on X¼[�1,1]. Jackson operator (see [18,12])
plays an important role in approximation theory. For two natural
number d, r, taking q¼[d/r]+1, Jackson kernel is defined by

KdrðtÞ ¼ Lq,rðtÞ ¼
1

lqr

sinqt
2

sint
2

 !2r

, ð3Þ

where

lqr ¼

Z p

�p

sinqt
2

sint
2

 !2r

dt:

Lemma 1 (See Xie and Zhou [18]). Let Kdr(t) be defined by (3). Then

Kdr(t) is a trigonometric polynomial with d order, andZ p

�p
KdrðtÞ dt¼ 1,

Z p

�p
tkKdrðtÞ dtrCkðdþ1Þ�k, k¼ 0,1, . . . ,2r�2:

Let f(x)¼ f(cos u)¼g(u) for u¼arccos x. By using the kernel Kdr(t),
we define Jackson operator on [�1,1] (see [18]):

Qdðf ,xÞ ¼ Jdðg,uÞ ¼�

Z p

�p
KdrðtÞ

Xk

j ¼ 1

ð�1Þj
k

j

 !
gðuþ jtÞ dt,

where r is minimum integer satisfying rZ ½ðkþ2Þ=2�.

Lemma 2 (See Xie and Zhou [18]). Let gAC½�p,p�, l¼0,1,y,j¼1,2y .
When l is not divided exactly by j, we haveZ p

�p
gðjtÞeilt dt¼ 0,

where C[a,b] denotes the set consisting of all continuous functions on [a,b].



Fig. 1. m(x)¼3(0.5x2
�1)2+2x/(cos x+2) with n¼500, s¼ 1.
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From Lemma 2 and the fact thatZ p

�p
gðuþ jtÞcoslt dt¼

Z p

�p
gðjtÞcos l t�

u

j

� �
dt

¼

Z p

�p
gðjtÞ cos lt cos

lu

j
þsin lt sin

lu

j

� �
dt, ð4Þ

if l is not divided exactly by j, then (4) equals to 0. Otherwise, (4) is a
trigonometric polynomial with l=j order. From the above discussion,
we know that Kdr is a trigonometric polynomial with d order. Then
Jd(g,u) is a linear combination of

R p
�p gðuþ jtÞcoslt dt for 1r jr

k,0r lrd, i.e., Jd(g,u) is a trigonometric polynomial with at most d

order. Therefore, Qd(f,x)¼ Jd(g,arccos x) is d order polynomial with
u¼arccos x.

Proposition 1. Let k be a natural number, f AC½�1,1�. For d¼0,1,y,
there holds

jf ðxÞ�Qdðf ,xÞjrCkok f ,
1

dþ1

� �
, 8xA ½�1,1�,

where Ck is a constant depending on k.

Proof. From Lemma 2 and the definition of Qd(f,x), we have for
u¼arccos x

jf ðxÞ�Qdðf ,xÞj ¼ jgðuÞ�Jdðg,uÞj ¼

Z p

�p
KdrðtÞD

k
t gðuÞ dt

����
����

r2

Z p

0
KdrðtÞokðg,tÞ dt:

From the definition of smoothness modulus, we know

okðg,tÞr ð1þðdþ1ÞtÞkok g,
1

dþ1

� �
:

For kr2r�2, applying Lemma 1, we get for d¼0,1,y

jf ðxÞ�Qdðf ,xÞjr2ok g,
1

dþ1

� �Z p

0
ð1þðdþ1ÞtÞkKdrðtÞ dt

rCkok g,
1

dþ1

� �
,

for any xA ½�1,1�.

For any t40,uA ½�p,p�,uþtA ½�p,p�, there holds jcosðuþtÞ�

cosujr jtj. For s¼ cost, we obtain

sup
jtjrh

jDk
t gðuÞjr sup

jcostjrh

jDk
t gðuÞj ¼ sup

jsjrh

jDk
s f ðxÞj:

We can getokðg,hÞrokðf ,hÞ. Combining with the above inequality,

we obtain

jf ðxÞ�Qdðf ,xÞjrCkok f ,
1

dþ1

� �
,

for any xA ½�1,1�.

The proof of Proposition 1 is completed. &
Fig. 2. m(x)¼8x/(x2+2) with n¼500, s¼ 1.
3. Applying to simulated data

We choose the function in F d by minimizing this risk with
respect to the parameter a¼ ða0, . . . ,adÞARdþ1. To compute the
estimation in polynomial space, we need to minimize

1

n

Xn

i ¼ 1

Xd

j ¼ 0

ajx
j
i�yi

0
@

1
A2

þlJaJ2
2

for given x1,x2, . . . ,xnA ½�1,1�, y1,y2, . . . ,ynAR with respect to

ajAR, j¼ 0,1, . . . ,d:
We may solve this minimization problem exactly by gradient. In
the sequel, we will illustrate it only by applying it to a few
simulated data set. Here we define ðX ,YÞ by

Y ¼Xþs � e,

where X is uniformly distributed on [�1,1], e is standard normally
distributed and independent of [�1,1], and s40. In Figs. 1 and 2,
we choose s¼ 1, and use two different univariate regression
functions in order to define two different data sets with size
n¼500. Each figure shows the true regression function with its
formula, a corresponding sample of size n¼500 and our estimation
applied to these samples.
4. Proof of Theorem 1

According to the definition of fz, it is easy to obtain

EðfzÞ�EðmÞrEðfzÞ�EðmÞþlJaðfzÞJ
2
2

r jfEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞgj

þjfEzðQdðm,�ÞÞ�EzðmÞ�ðEðQdðm,�ÞÞ�EðmÞÞgjþDðlÞ,
ð5Þ
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where DðlÞ ¼ EðQdðm,�ÞÞ�EðmÞþlJaðQdðm,�ÞÞJ2
2, Qdðm,�Þ is Jackson

operator with respect to m.
We first estimate jEðQdðm,�ÞÞ�EðmÞ�ðEzðQdðm,�ÞÞ�EzðmÞÞj in (5)

concerning the random variable x¼ ðQdðm,xÞ�yÞ2�ðmðxÞ�yÞ2, we
need the following probability inequality.

Lemma 3 (See van der Vaart and Wellner [1]). Let P be a probability

measure on Z ¼ X � Y and set z1¼(x1,y1),y,zn¼(xn,yn) be indepen-

dent random variables distributed according to P. Given a function

g : Z-R, set S¼
Pn

i ¼ 1 gðziÞ, let b¼ JgJ1 and put s2 ¼ nEg2. Then

ProbzAZn fjS�ESjZtgr2exp �
t2

2 s2þbt
3

� �
( )

:

Using Lemma 3, we obtain the following Theorem.

Theorem 2. For every 0odo1, with confidence 1�d=2, there holds

jEðQdðm,�ÞÞ�EðmÞ�ðEzðQdðm,�ÞÞ�EzðmÞÞjr
8ð4MþC�Þ2

3n
log

4

d
þ

1

2
DðlÞ:

Proof. Let gðzÞ¼ð1=nÞððQdðm,xÞ�yÞ2�ðmðxÞ�yÞ2Þ. From Proposition 1,
we know that

JQdðm,�ÞJ1rCkok m,
1

dþ1

� �
þJmJ1,

where JmJ1 ¼maxxA ½�1,1�jmðxÞj.

Since jmðxÞjrM for any xA ½�1,1�, we obtain

JQdðm,�ÞJ1rMþ
CCK

ðdþ1Þk
rMþC�,

where C*
¼CCk. For any zAZ we have

jgðzÞj ¼
1

n
jðQdðm,xÞ�2yþmðxÞÞðQdðm,xÞ�mðxÞÞjr

ð4MþC�Þ2

n
:

Hence JgJ1rð4MþC�Þ2=n¼ b. From (3), we get

Eðg2Þ ¼
1

n2
EððQdðm,xÞ�2yþmðxÞÞ2ðQdðm,xÞ�mðxÞÞ2Þ

r
ð4MþC�Þ2

n2
ðEðQdðm,�ÞÞ�EðmÞÞ

r
ð4MþC�Þ2

n
Eg:

Now we apply Lemma 3 with t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðeþEðQdðm,�ÞÞ�EðmÞÞ

p
to

g ¼ ð1=nÞððQdðm,xÞ�yÞ2�ðmðxÞ�yÞ2Þ. It asserts that for every e40,

with confidence at least

1�2exp �
eðeþEðQdðm,�ÞÞ�EðmÞÞ

2
ð4MþC�Þ2

n
ðEðQdðm,�ÞÞ�EðmÞÞþð4MþC�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðeþEðQdðm,�ÞÞ�EðmÞÞ

p
3n

 !
8>>>><
>>>>:

9>>>>=
>>>>;

Z1�2exp �
3ne

8ð4MþC�Þ2

( )
,

there holds

jEðQdðm,�ÞÞ�EðmÞ�ðEzðQdðm,�ÞÞ�EzðmÞÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðQdðm,�ÞÞ�EðmÞþe

p r
ffiffiffi
e
p
:

Recall an elementary inequality:

abr1
2ða

2þb2Þ 8a,bAR,

we have

jEðQdðm,�ÞÞ�EðmÞ�ðEzðQdðm,�ÞÞ�EzðmÞÞj

r
e
2
þ

1

2
ðEðQdðm,�ÞÞ�EðmÞþeÞ
reþ 1

2
DðlÞ:

Let d=2¼ 2expf�3ne=8ð4MþC�Þ2g, then

e¼ 8ð4MþC�Þ2

3n
log

4

d
:

Therefore, with confidence 1�d=2, there holds

jEðQdðm,�ÞÞ�EðmÞ�ðEzðQdðm,�ÞÞ�EzðmÞÞjr
8ð4MþC�Þ2

3n
log

4

d
þ

1

2
DðlÞ:

The proof of Theorem 2 is completed. &

For the first part in (5), we shall bound it by using the covering
number of the unit ball B1 in F d.

Definition 3 (See Zhou [21]). Let F be a subset of a metric space. For
any e40, the covering numberN ðF,eÞ is defined to be the minimal
integer l such that there exist l balls with radius e covering F.

Covering number is also used in lots of literature (see
[7,15,22,8,19,20]). Let BR be a ball in F d with radius R. Dimension
of F d is d+1, we know that (see [21])

logN ðBR,eÞrðdþ1Þlog
4R

e : ð6Þ

The first part of (5) is bounded by the following Proposition.

Proposition 2. For all e40, we have

ProbzAZfjEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞjZeg

r2exp ðdþ1Þlog
32ð2MþC�Þ2

e �
3nð3e�DðlÞÞ
64ð2MþC�Þ2

( )
:

Proof. From the definition of fz, we know that

jEðfzÞ�EzðfzÞ�EðmÞþEzðmÞjr sup
f AF d

jEðf Þ�Ezðf Þ�EðmÞþEzðmÞj:

Moreover, since

jðy�hðxÞÞ2�ðy�gðxÞÞ2j ¼ jðhðxÞ�gðxÞÞðhðxÞþgðxÞ�2yÞj

r ð4Mþ2C�ÞJh�gJ1, h,gAF d

it follows that

jEðhÞ�EzðhÞ�EðgÞþEzðgÞjr2ð4Mþ2C�ÞJh�gJ1, h,gAF d:

Let U ¼ ff1,f2, . . . ,flg �F d be a g�net of F d with the size

l¼N ðF d,gÞ. So we have

sup
f AF d

jEðf Þ�Ezðf Þ�EðmÞþEzðmÞj

rsup
f AU

jEðf Þ�Ezðf Þ�EðmÞþEzðmÞjþ2ð4Mþ2C�Þg:

Using the similar way with Theorem 2, there holds for any fiAU,

ProbzAZfjEðfiÞ�EðmÞ�ðEzðfiÞ�EzðmÞÞjZegr2exp �
3n e�1

2DðlÞ
� �

8ð4Mþ2C�Þ2

( )
,

which implies that

ProbzAZfjEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞjZeg

rProbzAZ sup
f AF d

jEðf Þ�EðmÞ�ðEzðf Þ�EzðmÞÞjZe
( )

rProbzAZ sup
f AU

jEðf Þ�EðmÞ�ðEzðf Þ�EzðmÞÞjZe�2ð4Mþ2C�Þg
( )

rN ðF d,gÞsup
f AU

ProbzAZfjEðf Þ�EðmÞ�ðEzðf Þ�EzðmÞÞjZe�2ð4Mþ2C�Þgg

r2N ðF d,gÞexp �
3n eþ2ð4Mþ2C�Þg�1

2DðlÞ
� �

8ð4Mþ2C�Þ2

( )
:
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We take g¼ e=ð8ð2MþC�ÞÞ, then

ProbzAZfjEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞjZeg

r2N F d,
e

8ð2MþC�Þ

� �
exp �

3nð3e�DðlÞÞ
64ð2MþC�Þ2

( )
:

From the definition of F d, we know that

Jf J1rMþC�, f AF d:

Combining with (6), we have

logN F d,
e

8ð2MþC�Þ

� �
r ðdþ1Þlog

32ð2MþC�Þ2

e :

Therefore,

ProbzAZfjEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞjZeg

r2exp ðdþ1Þlog
32ð2MþC�Þ2

e
�

3nð3e�DðlÞÞ
64ð2MþC�Þ2

( )
:

The proof of Proposition 2 is finished. &

From Theorem 2 and Proposition 2, we can now start with the
proof of Theorem 1.

Proof of Theorem 1. We use the following error decomposition:

EðfzÞ�EðmÞr jEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞj

þjEzðQdðm,�ÞÞ�EzðmÞ�ðEðQdðm,�ÞÞ�EðmÞÞjþDðlÞ
¼ T1þT2þDðlÞ: ð7Þ

We begin with bounding T1 in (7). We discuss two cases for
eZM2=n and eoM2=n.

(i) When eZM2=n, we know that from Proposition 2

ProbzAZfjEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞjreg

Z1�2exp ðdþ1Þlog
32ð2MþC�Þ2

e
�

3nð3e�DðlÞÞ
64ð2MþC�Þ2

( )

Z1�2exp ðdþ1Þlog
32nð2MþC�Þ2

M2
�

3nð3e�DðlÞÞ
64ð2MþC�Þ2

( )
:

Let

2exp ðdþ1Þlog
32nð2MþC�Þ2

M2
�

3nð3e�DðlÞÞ
64ð2MþC�Þ2

( )
¼

d
2
:

Then we have

e¼
64ð2MþC�Þ2ðdþ1Þlog32nð2MþC�Þ2

M2

9n

þ
64ð2MþC�Þ2log4

d
9n

þ
DðlÞ

3
Z

M2

n
:

So there holds

jEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞj

r
64ð2MþC�Þ2ðdþ1Þlog32nð2MþC�Þ2

M2

9n

þ
64ð2MþC�Þ2log4

d
9n

þ
DðlÞ

3

with confidence 1�d=2.

(ii) When erM2=n, we know that from Proposition 2

jEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞjr
M2

n
,

with confidence 1�d=2.

Combining with the cases e4M2=n and erM2=n, there holds

jEðfzÞ�EðmÞ�ðEzðfzÞ�EzðmÞÞj
r
64ð2MþC�Þ2ðdþ1Þlog32nð2MþC�Þ2

M2

9n
þ

64ð2MþC�Þ2log4
d

9n
þ

DðlÞ
3

,

with confidence 1�d=2.

To estimate T2, by using Theorem 2, we know that with

confidence 1�d=2, there holds

jEðQdðm,�ÞÞ�EðmÞ�ðEzðQdðm,�ÞÞ�EzðmÞÞjr
8ð4MþC�Þ2

3n
log

4

d
þ

1

2
DðlÞ:

We bound DðlÞ in (7) and by taking l¼ 1=nðJaðQdðm,�ÞÞJ2
2þ1Þ.

DðlÞ ¼ EðQdðm,�ÞÞ�EðmÞþlJaðQdðm,�ÞÞJ2
2

¼

Z
X
ðQdðm,xÞ�mðxÞÞ2mðdxÞþ

1

n
:

Combining with the upper bound of T1, T2 and DðlÞ, there holds

EðfzÞ�EðmÞ

r
64ð2MþC�Þ2ðdþ1Þlog32nð2MþC�Þ2

M2

9n
þ

88ð2MþC�Þ2log4
d

9n

þ2

Z
X
ðQdðm,xÞ�mðxÞÞ2mðdxÞþ

3

n
,

with confidence 1�d.

The proof of Theorem 1 is completed. &

In order to prove Corollary 1, we need to estimateZ
X
ðQdðm,xÞ�mðxÞÞ2mðdxÞ:

From (4), we know that Qd(m,x) is a polynomial with d order.
And Proposition 1 tells us

jQdðm,xÞj ¼ jJdðm,arccosxÞjr jmðxÞjþok m,
1

dþ1

� �
:

Since mðkÞALipC1, then we get

ok m,
1

dþ1

� �
rCCk

1

ðdþ1Þk
¼

C�

ðdþ1Þk
rC�,

where C*
¼CCk is a constant depending on k.

So we obtain

jQdðm,xÞj ¼ jJdðm,arccosxÞjr jmðxÞjþok m,
1

dþ1

� �
rMþC�, 8 xA ½�1,1�:

Hence Qdðm,xÞAF d.
From Proposition 1, we knowZ

X
ðQdðm,xÞ�mðxÞÞ2mðdxÞrJQdðm,xÞ�mðxÞJ2

1

r Ckok m,
1

dþ1

� �� �2

rC�
1

d2k
:

Combining Theorem 1 with the above inequality, we get

EðfzÞ�EðmÞ

r
128ð2MþC�Þ2dlog32nð2MþC�Þ2

M2

9n
þ

2C�

d2k
þ

88ð2MþC�Þ2log4
d

9n
þ

3

n
,

and this expression is minimized for

d¼
9C�n

64ð2MþC�Þ2log32nð2MþC�Þ2

M2

0
@

1
A1=ð2kþ1Þ

2
64

3
75:

With confidence 1�d, there holds

EðfzÞ�EðmÞr4C�
128ð2MþC�Þ2log32nð2MþC�Þ2

M2

9C�n

 !2k=ð2kþ1Þ2
4

3
5

þ
88ð2MþC�Þ2log4

d
9n

þ
3

n
:

The proof of Corollary 1 is finished.
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5. Conclusions

In this paper, the explicit upper bounds of learning rate have been
derived by using least square schemes in polynomial space. In
particular, the estimation of bounds has achieved good rate of
convergence for one variable smooth regression function. To our
knowledge, these bounds, in some extent, improved the previous
known bounds under the smooth condition. In the proof the Jackson
operator in approximation theory and general probability inequality
were used. The obtained error estimation has also been is illustrated by
applying simulated data.
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